
Community edition
Documentation

Documentation
AMPLI-SYNC community
edition
For samples for older version 2.x see branch 'clients-for-v2.x'.

Mobile platform specific implementations are under ampli sync-clients folder.

Background
Mobile users now expect desktop quality data driven interactive applications.

Yet as a mobile users, ‘Offline’ or ‘Intermittent connectivity’ is a fact of life.

Mobile networks simply don’t provide that same level of consistency that we get from the desktop.
We, as app developers can’t keep building applications with the desktop mentality of assuming we
have a permanent, fast and reliable connection.

The time has come for mobile app developers to accept reality.

It’s time to think about designing and building our applications as ‘offline-first’, where the offline
mode isn’t simply a fall-back for an error scenario but the main mode of operation, and internet
connectivity is established under app control.

There are many ways to build mobile applications and we all have our own favourite tools which we
don’t want to give up.

When building data driven occasionally connected mobile applications, the common issue we all
face is Bi-Directional Data Synchronisation and when/where to start that sync. Automatic data sync
when a connection becomes available can create its own issues. What is needed is a simple and
controlled method for performing Bi-Directional Synchronisation.

AMPLI-SYNC service provides you with a possibility of providing your system with full functionality
even when not connected to the Internet.

The service supports many different platforms, such as:

Android (JAVA)
iOS (Objective C)
Xamarin
.NET (C#)
Javascript
JQuery
Universal Windows Platform
React-Native
Cordova

Our priority is our customer therefore do not hesitate to get in touch with us under
support@ampliapps.com. We read every email and every incoming message is given the highest
priority.

In a nutshell:

AMPLI-SYNC Offline-first applications, with working offline SQLite storage. Synchronisation with
Microsoft SQL or MySQL back-end servers. Automatic mobile schema creation if required. ‘Click-To-
Sync’ web service. Various platforms supported. Two subsriptions: Paid and Open-Source

Buy me a coffee or beer: tomek(at)dziemidowicz.cloud

Find out more at: https://ampliapps.com/

ampli-sync documentation
AMPLI-SYNC concept
Solution diagram

Image not found or type unknown

Devices communicate with server using HTTP/HTTPS protocol.
Proxy Load Balancer. If necessary, proxy can redirect request to another instance of
SQLite-core.
Authorization provider will generate token based on response from authorization provider.

Proxy Balancer flowchart

Image not found or type unknown

Authorization Provider flowchart
Image not found or type unknown

REST API (server API)

Protocol version
This document describes integration with the REST API 3.x protocol.

Service description
There are two stages to processing a request:

Device places an request.
SQLite-sync server confirms the request has been processed successfully and sends
confirmation with eventual conflict list that need to be resolved.

Synchronization flowchart
Image not found or type unknown

Request URL format
Sample REST API call:

Explanation:
https://example.com/ - adres of REST API service
API3 - version of synchronization
method_ - method/action

API methods
API3 - control method
Method : GET
Path : “/API3”

https://example.com/API3/__method___

Produces : TEXT_HTML
Description : control method. Returns “API[v3] ampli-sync is working correctly!” if web service is
correctly configured.

InitializeSubscriber - Reinitialize subscriber
Method : GET
Path : “/InitializeSubscriber/{subscriberUUID}”
Produces : TEXT_PLAIN
Description : Reinitialize subscriber, create empty schema on device, prepare master database
for new subscriber.

Sync - gets changes for table
Method : GET
Path : /Sync/{subscriberUUID}/{tableName}
Produces : TEXT_PLAIN
Description : Get changed data.
Params:
subscriberUUID - identifier of subscriber. By default device unique ID is used. But we can place
there any value (also #user.UUID)
tableName - name of table from database (without schema)
Response:

 <?xml version="1.0" encoding="utf-8"?>
 <records>
 <r a="1">
 <c>2</c>
 <c>Document</c>
 <c>75541</c>
 <c>2014-02-13 00:00:00</c>
 <c>665.000</c>
 <c>2c93d64e-cc72-11e3-87e0-f82fa8e587f9</c>
 </r>
 <r a="2">
 <c>4</c>
 <c>Document 4</c>
 <c>4879</c>
 <c>2014-04-23 13:44:48</c>
 <c>4875.000</c>
 <c>2c93d765-cc72-11e3-87e0-f82fa8e587f9</c>
 </r>
 </records>

- section contains records
- here starts record.
- here record ends
Attribute “a” (action type)
1 - new record
2 - update for record

CommitSync - control method
Method : GET
Path : “/CommitSync/{syncId}”
Produces : TEXT_PLAIN
Description : If device recieved all changes without error this method should be call to tell server
that there was no errors during receiving package. Params: syncId - id of data package

Send - control method
Method : POST
Path : “/Send”
Consumes : JSON
Produces : TEXT_PLAIN
Description : Send changes from device to master database.

For sample data format with changes see XML code sample.

AddTable - control method
Method : GET
Path : “/AddTable/{tableName}”
Produces : TEXT_PLAIN
Description : Add table to synchronization.

RemoveTable - control method
Method : GET
Path: “/RemoveTable/{tableName}”
Produces : TEXT_PLAIN
Description : Remove table from synchronization.

Conflict Resolution

Image not found or type unknown

Update procedure
Image not found or type unknown

When the user first starts the client application, will be forced to go online and do an initial sync
with the master DB, which sends a schema used to create the local database and its tables. After
that, the user can work offline.
When user is in older version will be forced to make update of schema. All updates will be sent to
client and apply locally. After successfully update client will send unsync data to master database.
A schema update usually means an update of the application is also needed, since the application
will need different SQL code to deal with the new schema.
The master DB will never receive changes from clients with the old schema, since a client always
pulls before pushing changes - and in the pull it would have received and applied the new schema.

Data filtering
Goal : send to device only documents that are main.
We will going to use the device with subscriber id 1.
In the database we have a table where we are storing documents [dbo].[Documents] , user data
[dbo].[Users] and table with relations between documents and users [dbo].[UserDocuments].

[dbo].[Documents] structure:
Image not found or type unknown

[dbo].[Users] structure:
Image not found or type unknown

[dbo].[UserDocuments] structure:
Image not found or type unknown

Please notice, that in table dbo.User we have a column usrSubscriberId - it tells exactly which user
uses particular subscriber id. Based on this column we are able to select which user id is used while
the device is undergoing the synchronization process.
The next step is to prepare view:
Image not found or type unknown

SQL code:

The view needs to return two things:

1. RowId of filtered table (dbo.Documents is this scenario) subscriberId aliased as ‘pdaIdent’
2. You can add extra condition in this view - it’s up to you.

Next step, we need to tell synchronization to use that filter:

 SELECT dbo.Documents.RowId, dbo.MergeSubscribers.SubscriberId AS pdaIdent
 FROM dbo.Documents
 INNER JOIN dbo.UserDocuments ON dbo.Documents.docId = dbo.UserDocuments.usdDocId
 INNER JOIN dbo.Users ON dbo.UserDocuments.usdUsrId = dbo.Users.usrId
 INNER JOIN dbo.MergeSubscribers ON dbo.Users.usrSubscriberId = dbo.MergeSubscribers.SubscriberId

where vwMerge_Documents is the name of your view.

Installation
Server Prerequisites
To make ampli-sync server work you need:

Apache Tomcat 8.
Java
Linux/Windows environment.

Manual
Steps needed to install AMPLI-SYNC manually on Ubuntu.

1. Install Tomcat on Ubuntu:
https://www.digitalocean.com/community/tutorials/how-to-install-apache-tomcat-8-on-
ubuntu-16-04

2. Create new user sudo adduser amplisync
System will ask you for password for newly created user.

3. Add user to group ‘tomcat’ sudo usermod -a -G tomcat amplisync
4. Chang in web.xml path variable to \home/sqlitesync/demo
5. Install new application in Tomcat. Start with switching to amplisync user. su amplisync
6. Create new folder /home/sqlitesync/demo
7. Upload new service amplisync-demo to Tomcat. You can do that using Tomcat application

manager, or you can put WAR file in Tomcat webapps folder. Name of your WAR file is app
name in Tomcat environment. Remember to not place spaces and special chars in name
of your WAR file.

8. Restart Tomcat: service tomcat restart
Now you can access your installation using link: http://your_ip:8080/amplisync-app-
name/API3

9. Setup permissions: chown -R sqlitesync:tomcat /home/amplisync/demo/

Docker

 update [MergeTablesToSync] set TableFilter='vwMerge_Documents' where TableName='Documents' and
TableSchema='dbo'

Configuring AMPLI-SYNC service
First you need to adjust website configuration file (web.xml), then you need to change main
configuration file (sync.properties).
Service configuration (web.xml)
Go to your_webapps_folder/SqliteSync/WEB-INF/web.xml and open for edit. Navigate to section:

change env-entry-value key and point to working dir where ampli-sync server will store log files,
temporary files and configuration. Create manually a subfolder named config. Create a text file
sync.properties in folder config. The path should look like this:

IMPORTANT Restart service after changing web.xml. Make sure that Tomcat has read/write access
to working dir.
Sample configurations for MySQL server

If you faced a timezone error after configuration in `sync.properties` add at the end of connection
string:

Keys explanation
DB_ENGINE - type of database engine. Available options:

 <env-entry>
 <env-entry-name>working-dir</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>/your/working/dir/sqlite-sync/</env-entry-value>
 </env-entry>

\working_dir\config\sync.properties

DB_ENGINE = mysql
DBURL = jdbc:mysql://server:3306/dbname?rewriteBatchedStatements=true
DBUSER = user
DBPASS = pass
DBDRIVER = com.mysql.cj.jdbc.Driver
DATE_FORMAT = yyyy-MM-dd HH:mm:ss
TIMESTAMP_FORMAT = yyyy-MM-dd HH:mm:ssZ
HISTORY_DAYS = 7
LOG_LEVEL = 4

&useUnicode=true&useJDBCCompliantTimezoneShift=true&useLegacyDatetimeCode=false&serverTimezone=U
TC

mysql
mssql
postgresql
oracle

LOG_LEVEL - defain details level for log
> 4: TRACE, DEBUG, INFO, WARN; (default)
> 3: DEBUG, INFO, WARN;
> 2: INFO,WARN;
> 1: WARN;
> 0 - disable logs
DATE_FORMAT, TIMESTAMP_FORMAT - set format of date
default format: yyyy-MM-dd HH:mm:ss
HISTORY_DAYS - How long files with sync data will be kept
default value: 7
When you use MySQL database DO NOT remove from the end of the connection string:

Supported databases
AMPLI-SYNC supports those databases:

MySQL
Microsoft SQL Server (2005 and newer)
Oracle
PostgreSQL

Supported columns data types
ampli-sync uses own conversion table to match column data types when schema from master
database is converted to sqlite database.

blob
longblob
varbinary
binary
image
mediumblob
varbinarymax
byte[]
longtext

?rewriteBatchedStatements=true

varchar
nvarchar
char
varcharmax
enum
mediumtext
text
string
geography
geometry
hierarchyid
nchar
ntext
nvarcharmax
userdefineddatatype
userdefinedtabletype
userdefinedtype
variant
xml
tinytext
set
time
timestamp
year
datetime
uniqueidentifier
datetime2
date
mediumint
bit
tinyint
smallint
bigint
int
boolean
byte
long
int64
serial
int32
smalldatetime
double
float
numeric
decimal

real
money

Primary Key requirements
Single and mupltiple columns are supported as primary key.
When column is AUTO_INCREMENT/SERIAL, identity pool management is handled by AMPLI_SYNC. It
means when you insert a new record onto the device, the PK will be automatically changed for the
first value available for device.

